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Abstract--The stretch, S, of a line in a zone of  general shear deformation is given by S = W sin 0/sin 0 ' ,  where 
the shear zone's  final to initial width ratio is W and the line's inclination to the zone boundary is 0 before 
deformation and 0'  after. For the special cases of simple shear and pure shear, S = sin 0/sin 0 ' ,  and 
S 2 = sin 20~sin 20', respectively. Fisher's and Sorby's formulae may be combined in a form appropriate to 
general shear strain, ~, = cot 0 '  - R cot 0, where R is the axial ratio of the irrotational component  of 
deformation and y is the shear strain; for simple shear and pure shear the equation reduces to y = cot 0 '  - cot 0, 
and tan 0 = R tan 0 ' ,  respectively. These relationships may be used to estimate strain in exposed faulted strata, 
or to restrict the possible geometries of inferred fault ramps in balanced geological cross-sections. 

RAMSAY & HUBER (1983, equations 1.4 & 1.7) give 
expressions for the longitudinal strain of a line in a zone 
of homogeneous simple shear. In simplified form, they 
are 

S 2 =  1 - y s i n 2 0  +~,2sin 20 (1) 

S -2 = 1 + ~ sin 20' + y2 sin 2 0 ' ,  (2) 

where S is the line's stretch, 0 and 0' are its initial and 
final inclinations to the zone boundary, and y is the 
simple shear strain. These formulae are useful for model- 
ling theoretical zones of predetermined simple shear 
strain, but they are not easily solved for ~, given the 
stretch and orientation of a linear marker. Furthermore, 
the assumption of simple shear is too restrictive as it 
excludes most natural strains which comprise pure and 
simple components. Even three-dimensional simple 
shear zones display changes in width in a two-dimen- 
sional section other than a principal or circular one 
(Skjernaa 1980). I have therefore derived more general 
expressions for stretch in shear zones. The following 
treatment is two-dimensional, but does not assume plane 
strain. 

Let L be the length of a line traversing a shear zone of 
unit width at an angle 0 (Fig. 1). Clearly, sin 0 = 1/L. 
After general shear deformation, let the zone's width be 
W, the line's length L ' ,  and its orientation 0 ' ,  so that 
sin 0' = W/L'. The stretch S (= L'/L) is therefore given 
by 

S = W sin 0/sin 0 ' .  (3) 

For the special case of simple shear (W = 1), 

S = sin 0/sin 0 ' .  (4) 

For the special case of pure shear (axial ratio R = l/W2), 
Sorby's formula (R = tan 0/tan 0 ' )  gives 

W 2 = tan 0 ' / tan  0. (5) 

Substituting for W 2 in equation (3) squared and convert- 
ing to double angles, 

S 2 = sin 20/sin 20'. (6) 

All of the above variables are illustrated on off-axis 
Mohr circles for stretch in Fig. 2. Equation (4) permits 
one to determine the initial orientation 0 of a line from 
its observed stretch S and final orientation 0 ' ,  assuming 
constant zone width (W = 1). Alternatively, if 0 is 
measured outside the shear zone, W may be calculated 
in equation (3). It is not generally possible to calculate 
the axial ratio R of the zone-parallel irrotational compo- 
nent ofdeformation.  However it may be valid to assume 
volume loss normal to the zone boundary (R = 1/W) or 
pure shear (R = l/W2). Expanding Fisher's formula to 
the general shear case, 

y = cot 0' - R cot 0. (7) 

The shear strain is determined by adopting either of the 

/ 

/ /  
Fig. 1. An initial unit square is traversed by a line of length L and 
orientation 0. After  deformation L ' ,  0 '  and W are line length, 

orientation and zone width. Area  not necessarily conserved. 
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Fig. 2. Mohr circles for stretch. Area  conserving cases chosen so one circle represents forward and reciprocal stretch if 
different sign conventions are used for 0 and 0% A , A '  = eigenvectors. Polar co-ordinates represent stretch (S = OB = 
1/OB')  and rotation (a  = AOB = A ' O B ' ) .  Initial orientation = 1/2 arc AB,  final = 1/2 arc A ' B ' .  Final/initial zone width 
W = O A '  (=  1/OA). Formulae derived from rule of sines in triangles O A ' B  in cases (a) and (b), and from similar triangles 
in case (c). Pole to initial bedding = P, final = P ' .  For case (a) only, thickness ratio t ' / t  = OP0 (= 1/OPt). Mohr  circles of 

the Second Kind (De Paor & Means 1984). 

above assumptions for R and then eliminating W using 
equation (3). For volume loss, 

7 = cot 0' - cot O/W (8) 

(compare Ramsay 1980, equation 21). For a pure shear 
component (R = 1/W2),  equation (3) yields 

R = sin 20/S 2 sin a 0'. (9) 

Thus, both 7 and R can be determined from 0, 0' and S. 
In the special cases of pure shear without simple shear 
(7 = 0) and simple shear without pure shear (R = 1), 
equation (7) reduces to Sorby's and Fisher's formula, 
respectively. 

Equations (3), (4), (6) and (7) are so simple and 
fundamental, one wonders why they were not derived in 
the last century. An analogy of the simple shear case has 
appeared in Thompson (1960) in the context of fault 
block tilting (see also Albrecht 1966, Skjernaa 1980, 
Ragan 1985), and the inverse problem of determining 
thickness changes (from t to t ')  of dykes traversing 
simple shear zones was solved by Escher et al. (1975; also 
Ramsay 1980, p. 92). Being based on the rule of sines, 
their formula 

t ' / t  = sin 0'/sin 0 (10) 

looks like equation (4), but note that 0 and 0' are 
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Fig. 3. Applications to section balancing. Footwall represented by wooden block. (a) Hold card deck against fault, slide to 
fit ramp angle, mark ramp length and bed thickness. (b) Move deck over fault bend, add/delete cards and shear as shown. 
(c) Hold cards with face against ramp and trace bed on side of  deck. (d) Move deck over fault bend and adjust as in (b); note 

that L = constant, but t, 0 change to t ' ,  0 ' .  Symbols as in Figs. 1 and 2. 
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interchanged and that t ' / t  is not a measure of stretch 
because the normal to the dyke margin is generally 
sheared and does not coincide with the same material 
line before and after deformation (Schwerdtner 1978). 
Jamison (1987) uses equation (10) to calculate thrust 
related fold geometries, and Suppe (1983, equation 16) 
employs an analogous measure for displacement 
changes across fault bends. However, it appears that the 
general equations [(3) and (7)] have not been formally 
presented before, and they are certainly not well known. 

To examine the implications for section balancing, 
consider the effects of thrusting on strata as illustrated 
by Fig. 3. Choosing a reference frame parallel and 
perpendicular to bedding, W = t ' / t .  If the ramp length 
between two bedding cut-offs is L and the cut-off angle 
is 8 in the footwall, then the equivalent hangingwall 
parameters, L '  and 8 ' ,  are not independent variables 
but are related by 

L ' / L  = [ t ' / t ] [ s in  8/sin 8']. (11) 

A card deck may be used to demonstrate the interdepen- 
dence of variables. If there is no internal strain (cards 
held without sliding), then 8' = 8. Unless there are 
thickness changes in strata due to growth faulting, t '  = t,  
implying L'  = L. This simplest case has been proposed 
by Crane (1987) (see also Fischer & Coward 1982) as a 
rule-of-thumb for section construction. If 8' = 8, there 
is no internal shear (unless bedding and fault traces are 
both parallel to deformation eigenvectorsma contrived 
case); the only possible strain would be isotropic, but 
that could not be confined within straight zone bound- 
aries. For constant thickness (t' = t), the interdepen- 
dence of L '  and 8' is demonstrated by moving the card 
deck up the fault (Fig. 3a & b) and shearing it to and fro. 
Thickness changes are simulated by addition or deletion 
of cards. Finally, if L '  = L, equation (11) reduces to 
equation (10). The deformation may look general in the 
bedding reference frame but, if area is conserved, it is 
equivalent to a simple shear parallel to the fault trace, 
and may be simulated with the cards held facing the fault 
plane (Fig. 3c & d). In response to simple shear, bed 
thicknesses and cut-off angles satisfy Escher et  a l . ' s  
equation [equation (10)]. 

In conclusion, it should be clear that the general shear 
deformation of hangingwall relative to footwall is 
entirely due to movement of strata over the fault bend. 

This is a spatially controlled strain which is additional to 
any material strain that occurred before or after fault 
displacement; it does not matter whether the footwall is 
undeformed or not (c.f. Fischer & Coward 1982). The 
strain recorded by classical markers such as fossils or 
pebbles may be factorized into components due to fault- 
ing and other causes. As far as the former is concerned, 
ramp lengths, bed thicknesses, and cut-off angles serve 
as strain markers just as if the fault had fortuitously cut 
straight through a trilobite! This should be encouraging 
to geologists who bemoan the absence of strain markers 
where they are most needed. 
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